Endow the gift of eloquence to your NLP applications using pre-trained word embeddings
Word embeddings are the plinth stones of Natural Language Processing (NLP) applications, used to transform human language into vectors that can be understood and processed by machine learning algorithms. Pre-trained word embeddings enable transfer of prior knowledge about the human language into a new application thereby enabling rapid creation of a scalable and efficient NLP applications. Since the emergence of word2vec in 2013, the word embeddings field has seen rapid developments by leaps and bounds with each new successive word embedding outperforming the prior one.
The goal of this talk is to demonstrate the efficacy of using pre-trained word embedding to create scalable and robust NLP applications, and to explain to the audience the underlying theory of word embeddings that makes it possible. The talk will cover prominent word vector embeddings such as BERT and ELMo from the recent literature.
Outline/Structure of the Talk
1. What are word embeddings? (5 minutes)
2. Creating custom word embeddings using dimensionality reduction (10 minutes)
3. Introduction to ELMo and BERT (15 minutes)
4. Use of pre-trained word embedding for text classification tasks using BERT (10 minutes)
5. Conclusion and Questions (5 minutes)
Learning Outcome
Knowledge of the history and the theory of word embeddings. Using state of the art pre-trained word embeddings for creating scalable natural language processing applications
Target Audience
Beginner/Mid-level experience with Natural Language Processing (NLP)
Video
Links
https://drive.google.com/file/d/1mUZ_zMV13KMFGHHaekCRFJIGuPbUz2Ho/preview
https://link.springer.com/chapter/10.1007/978-3-030-04780-1_9
https://link.springer.com/chapter/10.1007/978-3-319-39426-8_32
Emerging Technologies and Opportunities for Innovation in Financial Data Analytics: A Perspective, [email protected] Data Analytics 2018 (https://link.springer.com/chapter/10.1007/978-3-030-04780-1_9)
schedule Submitted 3 years ago
People who liked this proposal, also liked:
-
keyboard_arrow_down
Dr. Dakshinamurthy V Kolluru - Understanding Text: An exciting journey from Probabilistic Models to Neural Networks
45 Mins
Talk
Intermediate
We will trace the journey of NLP over the past 50 odd years. We will cover chronologically Hidden Markov Models, Elman networks, Conditional Random Fields, LSTMs, Word2Vec, Encoder-Decoder models, Attention models, transfer learning in text and finally transformer architectures. Our emphasis is going to be on how the models became powerful and simple to implement simultaneously. To demonstrate this, we take a few case studies solved at INSOFE with a primary goal of retaining accuracy while simplifying engineering. Traditional methods will be compared and contrasted against modern models and show how the latest models actually are becoming easier to implement by the business. We also explain how this enhanced comfort with text data is paving way for state of the art inclusive architectures
-
keyboard_arrow_down
Yogesh H. Kulkarni - MidcurveNN: Encoder-Decoder Neural Network for Computing Midcurve of a Thin Polygon
45 Mins
Talk
Intermediate
Various applications need lower dimensional representation of shapes. Midcurve is one- dimensional(1D) representation of a two-dimensional (2D) planar shape. It is used in applications such as animation, shape matching, retrieval, finite element analysis, etc. Methods available to compute midcurves vary based on the type of the input shape (images, sketches, etc.) and processing approaches such as Thinning, Medial Axis Transform (MAT), Chordal Axis Transform (CAT), Straight Skeletons, etc., all of which are rule-based.
This presentation talks about a novel method called MidcurveNN which uses Encoder-Decoder neural network for computing midcurve from images of 2D thin polygons in supervised learning manner. This dimension reduction transformation from input 2D thin polygon image to output 1D midcurve image is learnt by the neural network, which can then be used to compute midcurve of an unseen 2D thin polygonal shape.
-
keyboard_arrow_down
Dat Tran - Image ATM - Image Classification for Everyone
45 Mins
Talk
Intermediate
At idealo.de we store and display millions of images. Our gallery contains pictures of all sorts. You’ll find there vacuum cleaners, bike helmets as well as hotel rooms. Working with huge volume of images brings some challenges: How to organize the galleries? What exactly is in there? Do we actually need all of it?
To tackle these problems you first need to label all the pictures. In 2018 our Data Science team completed four projects in the area of image classification. In 2019 there were many more to come. Therefore, we decided to automate this process by creating a software we called Image ATM (Automated Tagging Machine). With the help of transfer learning, Image ATM enables the user to train a Deep Learning model without knowledge or experience in the area of Machine Learning. All you need is data and spare couple of minutes!
In this talk we will discuss the state-of-art technologies available for image classification and present Image ATM in the context of these technologies. We will then give a crash course of our product where we will guide you through different ways of using it - in shell, on Jupyter Notebook and on the Cloud. We will also talk about our roadmap for Image ATM.
-
keyboard_arrow_down
Dr. Vikas Agrawal - Non-Stationary Time Series: Finding Relationships Between Changing Processes for Enterprise Prescriptive Systems
45 Mins
Talk
Intermediate
It is too tedious to keep on asking questions, seek explanations or set thresholds for trends or anomalies. Why not find problems before they happen, find explanations for the glitches and suggest shortest paths to fixing them? Businesses are always changing along with their competitive environment and processes. No static model can handle that. Using dynamic models that find time-delayed interactions between multiple time series, we need to make proactive forecasts of anomalous trends of risks and opportunities in operations, sales, revenue and personnel, based on multiple factors influencing each other over time. We need to know how to set what is “normal” and determine when the business processes from six months ago do not apply any more, or only applies to 35% of the cases today, while explaining the causes of risk and sources of opportunity, their relative directions and magnitude, in the context of the decision-making and transactional applications, using state-of-the-art techniques.
Real world processes and businesses keeps changing, with one moving part changing another over time. Can we capture these changing relationships? Can we use multiple variables to find risks on key interesting ones? We will take a fun journey culminating in the most recent developments in the field. What methods work well and which break? What can we use in practice?
For instance, we can show a CEO that they would miss their revenue target by over 6% for the quarter, and tell us why i.e. in what ways has their business changed over the last year. Then we provide the prioritized ordered lists of quickest, cheapest and least risky paths to help turn them over the tide, with estimates of relative costs and expected probability of success.
-
keyboard_arrow_down
Dipanjan Sarkar - Explainable Artificial Intelligence - Demystifying the Hype
45 Mins
Tutorial
Intermediate
The field of Artificial Intelligence powered by Machine Learning and Deep Learning has gone through some phenomenal changes over the last decade. Starting off as just a pure academic and research-oriented domain, we have seen widespread industry adoption across diverse domains including retail, technology, healthcare, science and many more. More than often, the standard toolbox of machine learning, statistical or deep learning models remain the same. New models do come into existence like Capsule Networks, but industry adoption of the same usually takes several years. Hence, in the industry, the main focus of data science or machine learning is more ‘applied’ rather than theoretical and effective application of these models on the right data to solve complex real-world problems is of paramount importance.
A machine learning or deep learning model by itself consists of an algorithm which tries to learn latent patterns and relationships from data without hard-coding fixed rules. Hence, explaining how a model works to the business always poses its own set of challenges. There are some domains in the industry especially in the world of finance like insurance or banking where data scientists often end up having to use more traditional machine learning models (linear or tree-based). The reason being that model interpretability is very important for the business to explain each and every decision being taken by the model.However, this often leads to a sacrifice in performance. This is where complex models like ensembles and neural networks typically give us better and more accurate performance (since true relationships are rarely linear in nature).We, however, end up being unable to have proper interpretations for model decisions.
To address and talk about these gaps, I will take a conceptual yet hands-on approach where we will explore some of these challenges in-depth about explainable artificial intelligence (XAI) and human interpretable machine learning and even showcase with some examples using state-of-the-art model interpretation frameworks in Python!
-
keyboard_arrow_down
Samiran Roy / Shibsankar Das - Algorithms that learn to solve tasks by watching (one) Youtube video
Samiran RoySr. Lead Data SciencesEnvestnet | YodleeShibsankar DasSr. Lead Data ScientistEnvestnet | Yodleeschedule 3 years ago
45 Mins
Case Study
Intermediate
Imitation Learning has been the backbone of Robots learning from demonstrator's behavior. Join us to know more about How to train a robot to perform task like acrobatics etc.
Two branches of AI - Deep Learning, and Reinforcement Learning are now responsible for many real-world applications. Machine Translation, Speech Recognition, Object Detection, Robot Control, and Drug Discovery - are some of the numerous examples.
Both approaches are data-hungry - DL requires many examples of each class, and RL needs to play through many episodes to learn a policy. Contrast this to human intelligence. A small child can typically see an image just once, and instantly recognize it in other contexts and environments. We seem to possess an innate model/representation of how the world works, which helps us grasp new concepts and adapt to new situations fast. Humans are excellent one/few shot learners. We are able to learn complex tasks by observing and imitating other humans (eg: cooking, dancing or playing soccer) - despite having a different point of view, sense modalities, body structure, mental facility.
Humans may be very good at picking up novel tasks, but Deep RL agents surpass us in performance. Once a Deep RL has learned a good representation [1], it is easy to surpass human performance in complex tasks like Go[2], Dota 2[3], and Starcraft[4]. We are biologically limited by time, memory and computation (A computer can be made to simulate thousands of plays in a minute).
RL struggles with tasks that have sparse rewards. Take an example of a soccer playing robot - controlled by applying a torque to each one of its joints. The environment rewards you when it scores a goal. If the policy is initialized randomly (we apply a random torque to each joint, every few milliseconds) the probability of the robot scoring a goal is negligible - it won't even be able to learn how to stand up. In tasks requiring long term planning or low-level skills, getting to that initial reward can prove impossible. These situations have the potential to greatly benefit from a demonstration - in this case showing the robot how to walk and kick - and then letting it figure out how to score a goal.
We have an abundance of visual data on humans performing various tasks, in the public domain, in the form of videos from sources like YouTube. In Youtube alone, 400 hours of videos are uploaded every minute, and it is easy to find demonstration videos for any skill imaginable. What if we could harness this by designing agents that could learn how to perform tasks - just by watching a video clip?
Imitation Learning, also known as apprenticeship learning, teaches an agent a sequence of decisions through demonstration, often by a human expert. It has been used in many applications such as teaching drones how to fly[5] and autonomous cars how to drive[6] - It relies on domain engineered features - or extremely precise representations such as mocap [7]. Directly applying imitation learning to learn from videos proves challenging, there is a misalignment of representation between the demonstrations and the agent’s environment. For example: How can a robot sensing its world through a 3d point cloud - learn from a noisy 2d video clip of a soccer player dribbling?
Leveraging recent advances in Reinforcement Learning, Self Supervised Learning and Imitation Learning [8] [9] [10], We present a technical deep dive into an end to end framework which:
1) Has prior knowledge about the world intelligence through Self-Supervised Learning - A relatively new area which seeks to build efficient deep learning representations from unlabelled data but training on a surrogate task. The surrogate task can be rotating an image and predicting the rotation angle or cropping two patches of the image, and predicting their relative tasks - or a combination of several such objectives.
2) Has the ability to align the representation of how it senses the world, with that of the video - allowing it to learn diverse tasks from video clips.
3) Has the ability to reproduce a skill, from only a single demonstration - using applied techniques from imitation learning
[1] https://www.cse.iitb.ac.in/~shivaram/papers/ks_adprl_2011.pdf
[2] https://ai.google/research/pubs/pub44806
[4] https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
[5] http://cs231n.stanford.edu/reports/2017/pdfs/614.pdf
[6] https://arxiv.org/pdf/1709.07174.pdf
[7] https://en.wikipedia.org/wiki/Motion_capture
[8] https://arxiv.org/pdf/1704.06888v3.pdf
-
keyboard_arrow_down
Avishkar Gupta / Dipanjan Sarkar - Leveraging AI to Enhance Developer Productivity & Confidence
Avishkar GuptaData ScientistRed HatDipanjan SarkarData Science LeadApplied Materialsschedule 3 years ago
45 Mins
Tutorial
Intermediate
A major approach to the application of AI is leveraging it to create a safer world around us, as well as that of helping people make choices. With the open source revolution having taken the world by a storm and developers relying on various upstream third party dependencies (too many to chose from!:http://www.modulecounts.com/) to develop applications moving petabytes of sensitive data and mission critical code that can lead to disastrous failures, it is required now more than ever to build better developer tooling to help developers make safer, better choices in terms of their dependencies as well as providing them with more insights around the code they are using. Thanks to deep learning, we are able to tackle these complex problems and this talk would be covering two diverse and interesting problems we have been trying to solve leveraging deep learning models (recommenders and NLP).
Though we are data scientists, at heart we are also developers building intelligent systems powered by AI. We, the Redhat developer group through our “Dependency Analytics” platform and extension, seek to do the same. We call this, 'AI-based insights for developers by developers'!
In this session we would be going into the details of the deep learning models we have implemented and deployed to solve two major problems:
- Dependency Recommendations: Recommend dependencies to a user for their specific application stack by trying to guess their intent by leveraging deep learning based recommender models.
- Pro-active Security and Vulnerability Analysis: We would also touch upon how our platform aims to make developer applications safer by way of CVE (Common Vulnerabilities and Exposures) analyses and the experimental deep learning models we have built to proactively identify potential vulnerabilities. We will talk about how we leveraged deep learning models for NLP to tackle this problem.
This shall be followed by a short architectural overview of the entire platform.
If we have enough time, we intend to showcase some sample code as a part of a tutorial of how we built these deep learning models and do a walkthrough of the same!
-
keyboard_arrow_down
Dr. C.S.Jyothirmayee / Usha Rengaraju / Vijayalakshmi Mahadevan - Deep learning powered Genomic Research
Dr. C.S.JyothirmayeeSr. ScientistNovozymes South Asia Pvt LtdUsha RengarajuPrincipal Data ScientistMysuru Consulting GroupVijayalakshmi MahadevanFaculty ScientistInstitute of Bioinformatics and Applied Biotechnology (IBAB)schedule 3 years ago
90 Mins
Workshop
Advanced
The event disease happens when there is a slip in the finely orchestrated dance between physiology, environment and genes. Treatment with chemicals (natural, synthetic or combination) solved some diseases but others persisted and got propagated along the generations. Molecular basis of disease became prime center of studies to understand and to analyze root cause. Cancer also showed a way that origin of disease, detection, prognosis and treatment along with cure was not so uncomplicated process. Treatment of diseases had to be done case by case basis (no one size fits).
With the advent of next generation sequencing, high through put analysis, enhanced computing power and new aspirations with neural network to address this conundrum of complicated genetic elements (structure and function of various genes in our systems). This requires the genomic material extraction, their sequencing (automated system) and analysis to map the strings of As, Ts, Gs, and Cs which yields genomic dataset. These datasets are too large for traditional and applied statistical techniques. Consequently, the important signals are often incredibly small along with blaring technical noise. This further requires far more sophisticated analysis techniques. Artificial intelligence and deep learning gives us the power to draw clinically useful information from the genetic datasets obtained by sequencing.
Precision of these analyses have become vital and way forward for disease detection, its predisposition, empowers medical authorities to make fair and situationally decision about patient treatment strategies. This kind of genomic profiling, prediction and mode of disease management is useful to tailoring FDA approved treatment strategies based on these molecular disease drivers and patient’s molecular makeup.
Now, the present scenario encourages designing, developing, testing of medicine based on existing genetic insights and models. Deep learning models are helping to analyze and interpreting tiny genetic variations ( like SNPs – Single Nucleotide Polymorphisms) which result in unraveling of crucial cellular process like metabolism, DNA wear and tear. These models are also responsible in identifying disease like cancer risk signatures from various body fluids. They have the immense potential to revolutionize healthcare ecosystem. Clinical data collection is not streamlined and done in a haphazard manner and the requirement of data to be amenable to a uniform fetchable and possibility to be combined with genetic information would power the value, interpretation and decisive patient treatment modalities and their outcomes.
There is hugh inflow of medical data from emerging human wearable technologies, along with other health data integrated with ability to do quickly carry out complex analyses on rich genomic databases over the cloud technologies … would revitalize disease fighting capability of humans. Last but still upcoming area of application in direct to consumer genomics (success of 23andMe).
This road map promises an end-to-end system to face disease in its all forms and nature. Medical research, and its applications like gene therapies, gene editing technologies like CRISPR, molecular diagnostics and precision medicine could be revolutionized by tailoring a high-throughput computing method and its application to enhanced genomic datasets.
-
keyboard_arrow_down
Ramanathan R / Gurram Poorna Prudhvi - Time Series analysis in Python
Ramanathan RDirectorZentropy TechnologiesGurram Poorna PrudhviMachine Learning Engineeermroadsschedule 4 years ago
240 Mins
Workshop
Intermediate
“Time is precious so is Time Series Analysis”
Time series analysis has been around for centuries helping us to solve from astronomical problems to business problems and advanced scientific research around us now. Time stores precious information, which most machine learning algorithms don’t deal with. But time series analysis, which is a mix of machine learning and statistics helps us to get useful insights. Time series can be applied to various fields like economy forecasting, budgetary analysis, sales forecasting, census analysis and much more. In this workshop, We will look at how to dive deep into time series data and make use of deep learning to make accurate predictions.
Structure of the workshop goes like this
- Introduction to Time series analysis
- Time Series Exploratory Data Analysis and Data manipulation with pandas
- Forecast Time series data with some classical method (AR, MA, ARMA, ARIMA, GARCH, E-GARCH)
- Introduction to Deep Learning and Time series forecasting using MLP and LSTM
- Forecasting using XGBoost
- Financial Time Series data
Libraries Used:
- Keras (with Tensorflow backend)
- matplotlib
- pandas
- statsmodels
- sklearn
- seaborn
- arch
-
keyboard_arrow_down
Anuj Gupta - Natural Language Processing Bootcamp - Zero to Hero
480 Mins
Workshop
Intermediate
Data is the new oil and unstructured data, especially text, images and videos contain a wealth of information. However, due to the inherent complexity in processing and analyzing this data, people often refrain from spending extra time and effort in venturing out from structured datasets to analyze these unstructured sources of data, which can be a potential gold mine. Natural Language Processing (NLP) is all about leveraging tools, techniques and algorithms to process and understand natural language based unstructured data - text, speech and so on.
Being specialized in domains like computer vision and natural language processing is no longer a luxury but a necessity which is expected of any data scientist in today’s fast-paced world! With a hands-on and interactive approach, we will understand essential concepts in NLP along with extensive case- studies and hands-on examples to master state-of-the-art tools, techniques and frameworks for actually applying NLP to solve real- world problems. We leverage Python 3 and the latest and best state-of- the-art frameworks including NLTK, Gensim, SpaCy, Scikit-Learn, TextBlob, Keras and TensorFlow to showcase our examples. You will be able to learn a fair bit of machine learning as well as deep learning in the context of NLP during this bootcamp.
In our journey in this field, we have struggled with various problems, faced many challenges, and learned various lessons over time. This workshop is our way of giving back a major chunk of the knowledge we’ve gained in the world of text analytics and natural language processing, where building a fancy word cloud from a bunch of text documents is not enough anymore. You might have had questions like ‘What is the right technique to solve a problem?’, ‘How does text summarization really work?’ and ‘Which are the best frameworks to solve multi-class text categorization?’ among many other questions! Based on our prior knowledge and learnings from publishing a couple of books in this domain, this workshop should help readers avoid some of the pressing issues in NLP and learn effective strategies to master NLP.
The intent of this workshop is to make you a hero in NLP so that you can start applying NLP to solve real-world problems. We start from zero and follow a comprehensive and structured approach to make you learn all the essentials in NLP. We will be covering the following aspects during the course of this workshop with hands-on examples and projects!
- Basics of Natural Language and Python for NLP tasks
- Text Processing and Wrangling
- Text Understanding - POS, NER, Parsing
- Text Representation - BOW, Embeddings, Contextual Embeddings
- Text Similarity and Content Recommenders
- Text Clustering
- Topic Modeling
- Text Summarization
- Sentiment Analysis - Unsupervised & Supervised
- Text Classification with Machine Learning and Deep Learning
- Multi-class & Multi-Label Text Classification
- Deep Transfer Learning and it's promise
- Applying Deep Transfer Learning - Universal Sentence Encoders, ELMo and BERT for NLP tasks
- Generative Deep Learning for NLP
- Next Steps
With over 10 hands-on projects, the bootcamp will be packed with plenty of hands-on examples for you to go through, try out and practice and we will try to keep theory to a minimum considering the limited time we have and the amount of ground we want to cover. We hope at the end of this workshop you can takeaway some useful methodologies to apply for solving NLP problems in the future. We will be using Python to showcase all our examples.
-
keyboard_arrow_down
Favio Vázquez - Complete Data Science Workflows with Open Source Tools
90 Mins
Tutorial
Beginner
Cleaning, preparing , transforming, exploring data and modeling it's what we hear all the time about data science, and these steps maybe the most important ones. But that's not the only thing about data science, in this talk you will learn how the combination of Apache Spark, Optimus, the Python ecosystem and Data Operations can form a whole framework for data science that will allow you and your company to go further, and beyond common sense and intuition to solve complex business problems.
-
keyboard_arrow_down
Suvro Shankar Ghosh - Real-Time Advertising Based On Web Browsing In Telecom Domain
Suvro Shankar GhoshData ScientistAtos Global IT Solutions And Services Private Limitedschedule 3 years ago
45 Mins
Case Study
Intermediate
The following section describes Telco Domain Real-time advertising based on browsing use case in terms of :
- Potential business benefits to earn.
- Functional use case architecture depicted.
- Data sources (attributes required).
- Analytic to be performed,
- Output to be provided and target systems to be integrated with.
This use case is part of the monetization category. The goal of the use case is to provide a kind of DataMart to either Telecom business parties or external third parties sufficient, relevant and customized information to produce real-time advertising to Telecom end users. The customer targets are all Telecom network end-users.
The customization information to be delivered to advertise are based on several dimensions:
- Customer characteristics: demographic, telco profile.
- Customer usage: Telco products or any other interests.
- Customer time/space identification: location, zoning areas, usage time windows.
Use case requirements are detailed in the description below as “ Targeting method”
- Search Engine Targeting:
The telco will use users web history to track what users are looking at and to gather information about them. When a user goes onto a website, their web browsing history will show information of the user, what he or she searched, where they are from, found by the ip address, and then build a profile around them, allowing Telco to easily target ads to the user more specifically.
- Content and Contextual Targeting:
This is when advertisers can put ads in a specific place, based on the relative content present. This targeting method can be used across different mediums, for example in an article online, about purchasing homes would have an advert associated with this context, like an insurance ad. This is achieved through an ad matching system which analyses the contents on a page or finds keywords and presents a relevant advert, sometimes through pop-ups.
- Technical Targeting
This form of targeting is associated with the user’s own software or hardware status. The advertisement is altered depending on the user’s available network bandwidth, for example if a user is on their mobile phone that has a limited connection, the ad delivery system will display a version of the ad that is smaller for a faster data transfer rate.
- Time Targeting:
This type of targeting is centered around time and focuses on the idea of fitting in around people’s everyday lifestyles. For example, scheduling specific ads at a timeframe from 5-7pm, when the
- Sociodemographic Targeting:
This form of targeting focuses on the characteristics of consumers, including their age, gender, and nationality. The idea is to target users specifically, using this data about them collected, for example, targeting a male in the age bracket of 18-24. The telco will use this form of targeting by showing advertisements relevant to the user’s individual demographic profile. this can show up in forms of banner ads, or commercial videos.
- Geographical and Location-Based Targeting:
This type of advertising involves targeting different users based on their geographic location. IP addresses can signal the location of a user and can usually transfer the location through different cells.
- Behavioral Targeting:
This form of targeted advertising is centered around the activity/actions of users and is more easily achieved on web pages. Information from browsing websites can be collected, which finds patterns in users search history.
- Retargeting:
Is where advertising uses behavioral targeting to produce ads that follow you after you have looked or purchased are a particular item. Retargeting is where advertisers use this information to ‘follow you’ and try and grab your attention so you do not forget.
- Opinions, attitudes, interests, and hobbies:
Psychographic segmentation also includes opinions on gender and politics, sporting and recreational activities, views on the environment and arts and cultural issues.
-
keyboard_arrow_down
Pankaj Kumar / Abinash Panda / Usha Rengaraju - Quantitative Finance :Global macro trading strategy using Probabilistic Graphical Models
Pankaj KumarQuantitative Research AssociateStatestreet Global AdvisorsAbinash PandaCEOProdios LabsUsha RengarajuPrincipal Data ScientistMysuru Consulting Groupschedule 3 years ago
90 Mins
Workshop
Advanced
{ This is a handson workshop in pgmpy package. The creator of pgmpy package Abinash Panda will do the code demonstration }
Crude oil plays an important role in the macroeconomic stability and it heavily influences the performance of the global financial markets. Unexpected fluctuations in the real price of crude oil are detrimental to the welfare of both oil-importing and oil-exporting economies.Global macro hedge-funds view forecast the price of oil as one of the key variables in generating macroeconomic projections and it also plays an important role for policy makers in predicting recessions.
Probabilistic Graphical Models can help in improving the accuracy of existing quantitative models for crude oil price prediction as it takes in to account many different macroeconomic and geopolitical variables .
Hidden Markov Models are used to detect underlying regimes of the time-series data by discretising the continuous time-series data. In this workshop we use Baum-Welch algorithm for learning the HMMs, and Viterbi Algorithm to find the sequence of hidden states (i.e. the regimes) given the observed states (i.e. monthly differences) of the time-series.
Belief Networks are used to analyse the probability of a regime in the Crude Oil given the evidence as a set of different regimes in the macroeconomic factors . Greedy Hill Climbing algorithm is used to learn the Belief Network, and the parameters are then learned using Bayesian Estimation using a K2 prior. Inference is then performed on the Belief Networks to obtain a forecast of the crude oil markets, and the forecast is tested on real data.
-
keyboard_arrow_down
Shalini Sinha / Ashok J / Yogesh Padmanaban - Hybrid Classification Model with Topic Modelling and LSTM Text Classifier to identify key drivers behind Incident Volume
45 Mins
Case Study
Intermediate
Incident volume reduction is one of the top priorities for any large-scale service organization along with timely resolution of incidents within the specified SLA parameters. AI and Machine learning solutions can help IT service desk manage the Incident influx as well as resolution cost by
- Identifying major topics from incident description and planning resource allocation and skill-sets accordingly
- Producing knowledge articles and resolution summary of similar incidents raised earlier
- Analyzing Root Causes of incidents and introducing processes and automation framework to predict and resolve them proactively
We will look at different approaches to combine standard document clustering algorithms such as Latent Dirichlet Allocation (LDA) and K-mean clustering on doc2vec along-with Text classification to produce easily interpret-able document clusters with semantically coherent/ text representation that helped IT operations of a large FMCG client identify key drivers/topics contributing towards incident volume and take necessary action on it.
-
keyboard_arrow_down
Saikat Sarkar / Dhanya Parameshwaran / Dr Sweta Choudhary / Srikanth Ramaswamy / Usha Rengaraju - AI meets Neuroscience
Saikat SarkarSr. Consultant Manager - AA & Human Data ScienceIMS HealthDhanya ParameshwaranData ScientistSAP LabsDr Sweta ChoudharyHead - Medical Products & ServicesMedwell VenturesSrikanth RamaswamyGroup Leader and Sr. ScientistBlue Brain Project, EPFLUsha RengarajuPrincipal Data ScientistMysuru Consulting Groupschedule 3 years ago
480 Mins
Workshop
Advanced
This is a mixer workshop with lot of clinicians , medical experts , Neuroimaging experts ,Neuroscientists, data scientists and statisticians will come under one roof to bring together this revolutionary workshop.
The theme will be updated soon .
Our celebrity and distinguished presenter Srikanth Ramaswamy who is an advisor at Mysuru Consulting Group and also works Blue Brain Project at the EPFL will be delivering an expert talk in the workshop.
https://www.linkedin.com/in/ramaswamysrikanth/
{ This workshop will be a combination of panel discussions , expert talk and neuroimaging data science workshop ( applying machine learning and deep learning algorithms to Neuroimaging data sets}
{ We are currently onboarding several experts from Neuroscience domain --Neurosurgeons , Neuroscientists and Computational Neuroscientists .Details of the speakers will be released soon }
Abstract for the Neuroimaging Data Science Part of the workshop:
The study of the human brain with neuroimaging technologies is at the cusp of an exciting era of Big Data. Many data collection projects, such as the NIH-funded Human Connectome Project, have made large, high- quality datasets of human neuroimaging data freely available to researchers. These large data sets promise to provide important new insights about human brain structure and function, and to provide us the clues needed to address a variety of neurological and psychiatric disorders. However, neuroscience researchers still face substantial challenges in capitalizing on these data, because these Big Data require a different set of technical and theoretical tools than those that are required for analyzing traditional experimental data. These skills and ideas, collectively referred to as Data Science, include knowledge in computer science and software engineering, databases, machine learning and statistics, and data visualization.
The workshop covers Data analysis, statistics and data visualization and applying cutting-edge analytics to complex and multimodal neuroimaging datasets . Topics which will be covered in this workshop are statistics, associative techniques, graph theoretical analysis, causal models, nonparametric inference, and meta-analytical synthesis.
-
keyboard_arrow_down
Antrixsh Gupta - Creating Custom Interactive Data Visualization Dashboards with Bokeh
90 Mins
Workshop
Beginner
This will be a hands-on workshop how to build a custom interactive dashboard application on your local machine or on any cloud service provider. You will also learn how to deploy this application with both security and scalability in mind.
Powerful Data visualization software solutions are extremely useful when building interactive data visualization dashboards. However, these types of solutions might not provide sufficient customization options. For those scenarios, you can use open source libraries like D3.js, Chart.js, or Bokeh to create custom dashboards. While these libraries offer a lot of flexibility for building dashboards with tailored features and visualizations.
-
keyboard_arrow_down
Dr. Mayuri Mehta - Demonstration of Deep Learning based Healthcare Applications
Dr. Mayuri MehtaProfessor & PG In-ChargeDepartment of Computer Engineering, Sarvajanik College of Engineering and Technologyschedule 3 years ago
45 Mins
Demonstration
Intermediate
Recent advancements in AI are proving beneficial in development of applications in various spheres of healthcare sector such as microbiological analysis, discovery of drug, disease diagnosis, Genomics, medical imaging and bioinformatics for translating a large-scale data into improved human healthcare. Automation in healthcare using machine learning/deep learning assists physicians to make faster, cheaper and more accurate diagnoses.
Due to increasing availability of electronic healthcare data (structured as well as unstructured data) and rapid progress of analytics techniques, a lot of research is being carried out in this area. Popular AI techniques include machine learning/deep learning for structured data and natural language processing for unstructured data. Guided by relevant clinical questions, powerful deep learning techniques can unlock clinically relevant information hidden in the massive amount of data, which in turn can assist clinical decision making.
We have successfully developed three deep learning based healthcare applications using TensorFlow and are currently working on three more healthcare related projects. In this demonstration session, first we shall briefly discuss the significance of deep learning for healthcare solutions. Next, we will demonstrate two deep learning based healthcare applications developed by us. The discussion of each application will include precise problem statement, proposed solution, data collected & used, experimental analysis and challenges encountered & overcame to achieve this success. Finally, we will briefly discuss the other applications on which we are currently working and the future scope of research in this area.
-
keyboard_arrow_down
Amit Baldwa - PREDICTING AND BEATING THE STOCK MARKET WITH MACHINE LEARNING AND TECHNICAL ANALYSIS
45 Mins
Demonstration
Intermediate
Machine learning provides systems the ability to automatically learn and improve from experience without being explicitly programmed.
Technical analysis shows in graphic form investor sentiment, both greed and fear. Technical analysis attempts to use past stock price and volume information to predict future price movements. Technical analysis of various indicators has been a time-tested strategy for seasoned traders and hedge funds, who have used these techniques to effective turn our profits in Securities Industry.
Some researchers claim that stock prices conform to the theory of random walk, which is that the future path of the price of a stock is not more predictable than random numbers. However, Stock prices do not follow random walks.
We will evaluate whether stock returns can be predicted based on historical information.
Coupled with Machine Learning, we further try to decipher the correlation between the various indicators and identify the set of indicators which appropriately predict the value
-
keyboard_arrow_down
Vishnu Murali - Deep learning for predictive maintenance : Towards Industry 4.0
45 Mins
Talk
Intermediate
Why Industry 4.0 matters?
Just 13 % of organizations have attained the complete effect in their digital investments, so empowering them is in demand to have financial upside and make digital expansion. The optimal combination of analytics/deep learning with IoT can save large and SME’s around $16 billion.
What’s predictive maintenance (PdM) of Industrial physical assets?
This is a online-monitoring system which requires hardware and software components, including condition monitoring sensors, gateways and modules to handle data processing and transmission, and a secured cloud server to handle data storage and data analytics.
Why is this important to Industries?
Cost, safety, availability, and reliability are the main reasons why key industrial players are investing in predictive maintenance. Predictive maintenance allows factories to monitor the condition of in-service equipment by measuring key parameters like vibration, temperature, pressure, and current. Such monitoring requires connected smart sensors featuring a high-speed signal chain, powerful processing, and wired and/or wireless connectivity.
Solutions
Considering the above sections, as in the case of any machine learning implementations, there are hidden and underlying challenges involved in implementing PdM for industries.
To tackle this, our research group has come up with focused solution to seamlessly integrate machine learning algorithms and industrial IoT platform. The real challenge is twofold. Apart from the technical trials, this is more of a need for agreement among plant engineers and research community.
Ambitious foresight
- To bring awareness among engineers about industry 4.0
- To have technically sound way of implementing PdM
- Providing deliverables and have ROI
Keywords: Predictive maintenance, Industry 4.0, Behavioral change
-
keyboard_arrow_down
Samiran Roy / Shibsankar Das - Semi-Supervised Insight generation from petabyte scale Text data
Samiran RoySr. Lead Data SciencesEnvestnet | YodleeShibsankar DasSr. Lead Data ScientistEnvestnet | Yodleeschedule 3 years ago
45 Mins
Case Study
Intermediate
Existing state-of-the-art supervised methods in Machine Learning require large amounts of annotated data to achieve good performance and generalization. However, manually constructing such a training data set with sentiment labels is a labor-intensive and time-consuming task. With the proliferation of data acquisition in domains such as images, text and video, the rate at which we acquire data is greater than the rate at which we can label them. Techniques that reduce the amount of labelled data needed to achieve competitive accuracies are of paramount importance for deploying scalable, data-driven, real-world solutions. Semi-Supervised Learning algorithms generally provide a way of learning about the structure of the data from the unlabelled examples, alleviating the need for labels.
At Envestnet | Yodlee, we have deployed several advanced state-of-the-art Machine Learning solutions which process millions of data points on a daily basis with very stringent service level commitments. A key aspect of our Natural Language Processing solutions is Semi-supervised learning (SSL): A family of methods that also make use of unlabelled data for training – typically a small amount of labelled data with a large amount of unlabelled data. Pure supervised solutions fail to exploit the rich syntactic structure of the unlabelled data to improve decision boundaries.
There is an abundance published work in the field - but few papers have succeeded in showing significantly better results than state-of-the-art supervised learning. Often, methods have simplifying assumptions that fail to transfer to real-world scenarios. There is a lack of practical guidelines for deploying effective SSL solutions. We attempt to bridge that gap by sharing our learning from successful SSL models deployed in production.
We will talk about best practices and challenges in deploying SSL solutions in NLP - We shall cover:
- Our findings while working on SSL.
- Techniques which have worked for us, and which have not
- Which SSL method is suitable to solve a given use-case.
- How to deal with different distributions for labelled and unlabelled data
- How to quantify the effectiveness of each point in our training data
- How to build a feedback loop that chooses points for training that result in the greatest accuracy boosts and
- The effect of relative sizes of labelled and unlabelled data
References:
[1] https://arxiv.org/pdf/1804.09170.pdf
[2] http://www.acad.bg/ebook/ml/MITPress-%20SemiSupervised%20Learning.pdf
[3] https://github.com/brain-research/realistic-ssl-evaluation