Story Teller - Analytics in Banking & Financial Sector
As kids, we always enjoyed stories. Some scary, some holy, some imbibing moral values & some just for fun.
Analytics is fun when you approach it with passion and curiosity. I know this because I have done this. With few case studies, I wish to illuminate your wits about Analytics and how it is being actively used in Banking and Financial Sector.
Come join me for a fun ride.
Outline/Structure of the Case Study
Potential of Analytics in Banking & Financial sector: A jolly way to approach !
- Story 1 – Customer Retention
- Story 2 – Fraud Detection & Prevention
- Story 3 – How to use Big Data to our advantage
- Story 4 – Product per Customer
Learning Outcome
Analytics Enthusiasts will learn how Analytics is an active part of Banking and Financial sector while enjoying some stories.
Target Audience
Analytics Enthusiasts
Prerequisites for Attendees
Story Lovers
Links
My Professional Profile: linkedin.com/in/vidhyaveeraraghavan
* Snippets of my earlier presentation :
https://www.linkedin.com/feed/update/urn:li:activity:6506507707749625856
https://www.linkedin.com/feed/update/urn:li:activity:6510140688028536832
https://www.linkedin.com/feed/update/urn:li:activity:6506552883029344256
https://www.linkedin.com/feed/update/urn:li:activity:6506879490168315904
* My upcoming talk can be found in this link:
https://www.linkedin.com/feed/update/urn:li:activity:6537231512205647872
* I am also conducting a workshop in Aegis school of Data Science, Mumbai on Client Journey Analytics on 15th Jun'19
schedule Submitted 4 years ago
People who liked this proposal, also liked:
-
keyboard_arrow_down
Subhasish Misra - Causal data science: Answering the crucial ‘why’ in your analysis.
45 Mins
Talk
Intermediate
Causal questions are ubiquitous in data science. For e.g. questions such as, did changing a feature in a website lead to more traffic or if digital ad exposure led to incremental purchase are deeply rooted in causality.
Randomized tests are considered to be the gold standard when it comes to getting to causal effects. However, experiments in many cases are unfeasible or unethical. In such cases one has to rely on observational (non-experimental) data to derive causal insights. The crucial difference between randomized experiments and observational data is that in the former, test subjects (e.g. customers) are randomly assigned a treatment (e.g. digital advertisement exposure). This helps curb the possibility that user response (e.g. clicking on a link in the ad and purchasing the product) across the two groups of treated and non-treated subjects is different owing to pre-existing differences in user characteristic (e.g. demographics, geo-location etc.). In essence, we can then attribute divergences observed post-treatment in key outcomes (e.g. purchase rate), as the causal impact of the treatment.
This treatment assignment mechanism that makes causal attribution possible via randomization is absent though when using observational data. Thankfully, there are scientific (statistical and beyond) techniques available to ensure that we are able to circumvent this shortcoming and get to causal reads.
The aim of this talk, will be to offer a practical overview of the above aspects of causal inference -which in turn as a discipline lies at the fascinating confluence of statistics, philosophy, computer science, psychology, economics, and medicine, among others. Topics include:
- The fundamental tenets of causality and measuring causal effects.
- Challenges involved in measuring causal effects in real world situations.
- Distinguishing between randomized and observational approaches to measuring the same.
- Provide an introduction to measuring causal effects using observational data using matching and its extension of propensity score based matching with a focus on the a) the intuition and statistics behind it b) Tips from the trenches, basis the speakers experience in these techniques and c) Practical limitations of such approaches
- Walk through an example of how matching was applied to get to causal insights regarding effectiveness of a digital product for a major retailer.
- Finally conclude with why understanding having a nuanced understanding of causality is all the more important in the big data era we are into.
-
keyboard_arrow_down
Akash Tandon - Traversing the graph computing and database ecosystem
45 Mins
Talk
Intermediate
Graphs have long held a special place in computer science’s history (and codebases). We're seeing the advent of a new wave of the information age; an age that is characterized by great emphasis on linked data. Hence, graph computing and databases have risen to prominence rapidly over the last few years. Be it enterprise knowledge graphs, fraud detection or graph-based social media analytics, there are a great number of potential applications.
To reap the benefits of graph databases and computing, one needs to understand the basics as well as current technical landscape and offerings. Equally important is to understand if a graph-based approach suits your problem.
These realizations are a result of my involvement in an effort to build an enterprise knowledge graph platform. I also believe that graph computing is more than a niche technology and has potential for organizations of varying scale.
Now, I want to share my learning with you.This talk will touch upon the above points with the general premise being that data structured as graph(s) can lead to improved data workflows.
During our journey, you will learn fundamentals of graph technology and witness a live demo using Neo4j, a popular property graph database. We will walk through a day in the life of data workers (engineers, scientists, analysts), the challenges that they face and how graph-based approaches result in elegant solutions.
We'll end our journey with a peek into the current graph ecosystem and high-level concepts that need to be kept in mind while adopting an offering. -
keyboard_arrow_down
Shrutika Poyrekar / kiran karkera / Usha Rengaraju - Introduction to Bayesian Networks
Shrutika PoyrekarData SientistEnvestnet | Yodleekiran karkeraData scientistDex.sgUsha RengarajuPrincipal Data ScientistMysuru Consulting Groupschedule 4 years ago
90 Mins
Workshop
Advanced
{ This is a handson workshop . The use case is Traffic analysis . }
Most machine learning models assume independent and identically distributed (i.i.d) data. Graphical models can capture almost arbitrarily rich dependency structures between variables. They encode conditional independence structure with graphs. Bayesian network, a type of graphical model describes a probability distribution among all variables by putting edges between the variable nodes, wherein edges represent the conditional probability factor in the factorized probability distribution. Thus Bayesian Networks provide a compact representation for dealing with uncertainty using an underlying graphical structure and the probability theory. These models have a variety of applications such as medical diagnosis, biomonitoring, image processing, turbo codes, information retrieval, document classification, gene regulatory networks, etc. amongst many others. These models are interpretable as they are able to capture the causal relationships between different features .They can work efficiently with small data and also deal with missing data which gives it more power than conventional machine learning and deep learning models.
In this session, we will discuss concepts of conditional independence, d- separation , Hammersley Clifford theorem , Bayes theorem, Expectation Maximization and Variable Elimination. There will be a code walk through of simple case study.
-
keyboard_arrow_down
AbdulMajedRaja - Become Language Agnostic by Combining the Power of R with Python using Reticulate
45 Mins
Tutorial
Intermediate
Language Wars have always been there for ages and it's got a new candidate with Data science booming - R vs Python. While the fans are fighting R vs Python, the creators (Hadley Wickham (Chief DS @ RStudio) and Wes McKinney (Creator of Pandas Project)) are working together as Ursa Labs team to create open source data science tools. A similar effort by RStudio has given birth to Reticulate (R Interface to Python) that helps programmers combine R and Python in the same code, session and project and create a new kind of super hero.
-
keyboard_arrow_down
Kshitij Srivastava / Manikant Prasad - Data Science in Containers
Kshitij SrivastavaData ScientistMillimanManikant PrasadData EngineerMillimanschedule 4 years ago
45 Mins
Case Study
Beginner
Containers are all the rage in the DevOps arena.
This session is a live demonstration of how the data team at Milliman uses containers at each step in their data science workflow -
1) How do containerized environments speed up data scientists at the data exploration stage
2) How do containers enable rapid prototyping and validation at the modeling stage
3) How do we put containerized models on production
4) How do containers make it easy for data scientists to do DevOps
5) How do containers make it easy for data scientists to host a data science dashboard with continuous integration and continuous delivery
-
keyboard_arrow_down
AbdulMajedRaja - Introduction to R for Data Science
90 Mins
Workshop
Beginner
R programming is one of the most popular programming languages used in Data Science. Known for its simplicity and easy to take off working environment, R has been the language of choice of many non-programmers and its Rich ecosystem enables it to perform variety of Data Science related tasks. The objective of this workshop is to help you get started with R for you to move forward with your Data Science journey. As we are moving into the world of language-agnostic developers, Even if you know a language already, knowing another extra programming language like R would add an extra feather to your cap.
-
keyboard_arrow_down
Dr. Neha Sehgal - Open Data Science for Smart Manufacturing
45 Mins
Talk
Intermediate
Open Data offers a tremendous opportunity in transformation of today’s manufacturing sector to smarter manufacturing. Smart Manufacturing initiatives include digitalising production processes and integrating IoT technologies for connecting machines to collect data for analysis and visualisation.
In this talk, an understanding of linkage between various industries within manufacturing sector through lens of Open Data Science will be illustrated. The data on manufacturing sector companies, company profiles, officers and financials will be scraped from UK Open Data API’s. The work I plan to showcase in ODSC is part of UK Made Smarter Project, where the work has been useful for major aerospace alliances to find out the champions and strugglers (SMEs) within manufacturing sector based on the open data gathered from multiple sources. The talk includes discussion on data extraction, data cleaning, data transformation - transforming raw financial information about companies to key metrics of interest - and further data analytics to create clusters of manufacturing companies into "Champions" and "Strugglers". The talk showcased examples of powerful R Shiny based dashboards of interest for suppliers, manufacturer and other key stakeholders in supply chain network.
Further analysis includes network analysis for industries, clustering and deploying the model as an API using Google Cloud Platform. The presenter will discuss about the necessity of 'Analytical Thinking' approach as an aid to handle complex big data projects and how to overcome challenges while working with real-life data science projects.
-
keyboard_arrow_down
Vidhya Veeraraghavan - Breaking Analytics Down: Unlocking the potential of Analytics (Banking Edition)
Vidhya VeeraraghavanAssociate Vice President - AnalyticsStandard Chartered Bankschedule 4 years ago
20 Mins
Experience Report
Beginner
The Buzzword "Analytics" gives a feeling of "Black Box" to most of us and it seems to scare a lot of people. As an experienced Banking professional, with my talk, I aim to Break-Analytics-Down by unveiling the utilities of Analytics in Banking as you learn how deeply it is prevalent amidst us.
-
keyboard_arrow_down
Shankar Somayajula - Revisiting Market Basket Analysis (MBA) with the help of SQL Pattern Matching
45 Mins
Case Study
Intermediate
NA