Lung cancer is the leading cause of cancer death among both men and women in the U.S., with more than a hundred thousand deaths every year. The five-year survival rate is only 17%; however, early detection of malignant lung nodules significantly improves the chances of survival and prognosis.
This study aims to show that 3D Convolutional Neural Networks (CNNs) which use the full 3D nature of the input data perform better in classifying lung nodules compared to previously used 2D CNNs. It also demonstrates an approach to develop an optimized 3D CNN that performs with state of art classification accuracies. CNNs, like other deep neural networks, have been black boxes giving users no understanding of why they predict what they predict. This study, for the first time, demonstrates that Gradient-weighted Class Activation Mapping (Grad-CAM) techniques can provide visual explanations for model decisions in lung nodule classification by highlighting discriminative regions. Several CNN architectures using Keras and TensorFlow were implemented as part of this study. The publicly available LUNA16 dataset, comprising 888 CT scans with candidate nodules manually annotated by radiologists, was used to train and test the models. The models were optimized by varying the hyperparameters, to reach accuracies exceeding 90%. Grad-CAM techniques were applied to the optimized 3D CNN to generate images that provide quality visual insights into the model decision making. The results demonstrate the promise of 3D CNNs as highly accurate and trustworthy classifiers for early lung cancer detection, leading to improved chances of survival and prognosis.