Siboli Mukherjee
Data Analyst
Vodafone Idea Ltd
location_on India
Member since 3 years
Siboli Mukherjee
Specialises In
-
keyboard_arrow_down
Real time Anomaly Detection in Network KPI using Time Series
20 Mins
Experience Report
Intermediate
Abstract:
How to accurately detect Key Performance Indicator (KPI) anomalies is a critical issue in cellular network management. In this talk I shall introduce CNR(Cellular Network Regression) a unified performance anomaly detection framework for KPI time-series data. CNR realizes simple statistical modelling and machine-learning-based regression for anomaly detection; in particular, it specifically takes into account seasonality and trend components as well as supports automated prediction model retraining based on prior detection results. I demonstrate here how CNR detects two types of anomalies of practical interest, namely sudden drops and correlation changes, based on a large-scale real-world KPI dataset collected from a metropolitan LTE network. I explore various prediction algorithms and feature selection strategies, and provide insights into how regression analysis can make automated and accurate KPI anomaly detection viable.
Index Terms—anomaly detection, NPAR (Network Performance Analysis)
- INTRODUCTION
The continuing advances of cellular network technologies make high-speed mobile Internet access a norm. However, cellular networks are large and complex by nature, and hence production cellular networks often suffer from performance degradations or failures due to various reasons, such as back- ground interference, power outages, malfunctions of network elements, and cable disconnections. It is thus critical for network administrators to detect and respond to performance anomalies of cellular networks in real time, so as to maintain network dependability and improve subscriber service quality. To pinpoint performance issues in cellular networks, a common practice adopted by network administrators is to monitor a diverse set of Key Performance Indicators (KPIs), which provide time-series data measurements that quantify specific performance aspects of network elements and resource usage. The main task of network administrators is to identify any KPI anomalies, which refer to unexpected patterns that occur at a single time instant or over a prolonged time period.
Today’s network diagnosis still mostly relies on domain experts to manually configure anomaly detection rules such a practice is error-prone, labour intensive, and inflexible. Recent studies propose to use (supervised) machine learning for anomaly detection in cellular networks . ellular networks, a common practice adopted by network administrators is to monitor a diverse set of Key Performance Indicators (KPIs), which provide time-series data measurements that quantify specific performance aspects of network elements and resource usage. The main task of network administrators is to identify any KPI anomalies, which refer to unexpected patterns that occur at a single time instant or over a prolonged time period.
Today’s network diagnosis still mostly relies on domain experts to manually configure anomaly detection rules such a practice is error-prone, labour intensive, and inflexible. Recent studies propose to use (supervised) machine learning for anomaly detection in cellular networks .
-
keyboard_arrow_down
AI in Telecommunication -An Obstacle or Opportunity
45 Mins
Talk
Executive
Introduction
“Alexa, launch Netflix!”
No longer limited to providing basic phone and Internet service, the telecom industry is at the epicentre of technological growth, led by its mobile and broadband services in the Internet of Things (IoT) era.This growth is expected to continue,The driver for this growth? Artificial intelligence (AI).
Artificial Intelligent applications are revolutionizing the way telecoms operate, optimize and provide service to their customers
Today’s communications service providers (CSPs) face increasing customer demands for higher quality services and better customer experiences (CX). Telecoms are addressing these opportunities by leveraging the vast amounts of data collected over the years from their massive customer base. This data is culled from devices, networks, mobile applications, geolocations, detailed customer profiles, services usage and billing data.
Telecoms are harnessing the power of AI to process and analyse these huge volumes of Big Data in order to extract actionable insights to provide better customer experiences, improve operations, and increase revenue through new products and services.
With Gartner forecasting that 20.4 billion connected devices will be in use worldwide by 2020, more and more CSPs are jumping on the bandwagon, recognizing the value of artificial intelligence applications in the telecommunications industry.
Forward-thinking CSPs have focused their efforts on four main areas where AI has already made significant inroads in delivering tangible business results: Network optimization, preventive maintenance, Virtual Assistants, and robotic process automation (RPA)
Network optimisation
AI is essential for helping CSPs build self-optimizing networks (SONs), where operators have the ability to automatically optimize network quality based on traffic information by region and time zone. Artificial intelligence applications in the telecommunications industry use advanced algorithms to look for patterns within the data, enabling telecoms to both detect and predict network anomalies, and allowing operators to proactively fix problems before customers are negatively impacted.
Some popular AI solutions for telecoms are ZeroStack’s ZBrain Cloud Management, which analyses private cloud telemetry storage and use for improved capacity planning, upgrades and general management; Aria Networks, an AI-based network optimization solution that counts a growing number of Tier-1 telecom companies as customers, and Sedona Systems’ NetFusion, which optimizes the routing of traffic and speed delivery of 5G-enabled services like AR/VR. Nokia launched its own machine learning-based AVA platform, a cloud-based network management solution to better manage capacity planning, and to predict service degradations on cell sites up to seven days in advance.
Predictive maintenance
AI-driven predictive analytics are helping telecoms provide better services by utilizing data, sophisticated algorithms and machine learning techniques to predict future results based on historical data. This means telecoms can use data-driven insights to can monitor the state of equipment, predict failure based on patterns, and proactively fix problems with communications hardware, such as cell towers, power lines, data centre servers, and even set-top boxes in customers’ homes.
In the short-term, network automation and intelligence will enable better root cause analysis and prediction of issues. Long term, these technologies will underpin more strategic goals, such as creating new customer experiences and dealing efficiently with business demands. An innovative solution by AT&Tis using AI to support its maintenance procedures: the company is testing a drone to expand its LTE network coverage and to utilize the analysis of video data captured by drones for tech support and infrastructure maintenance of its cell towers.Preventive maintenance is not only effective on the network side, but on the customer’s side as well.Dutch telecom KPN analyses the notes generated by its call centre agents, and uses the insights generated to make changes to the interactive voice response (IVR) system.
Virtual Assistants
Conversational AI platforms — known as virtual assistants — have learned to automate and scale one-on-one conversations so efficiently that they are projected to cut business expenses by as much as $8 billion in the next five years. Telecoms have turned to virtual assistants to help contend with the massive number of support requests for installation, set up, troubleshooting and maintenance, which often overwhelm customer support centre Using AI, telecoms can implement self-service capabilities that instruct customers how to install and operate their own devices.
Vodafone introduced its new chatbot — TOBi to handle a range of customer service-type questions. The chatbotscales responses to simple customer queries, thereby delivering the speed that customers demand. Nokia’s virtual assistant MIKA suggests solutions for network issues, leading to a 20% to 40% improvement in first-time resolution.
Robotic process automation (RPA)
CSPs all have vast numbers of customers and an endless volume of daily transactions, each susceptible to human error. Robotic Process Automation (RPA) is a form of business process automation technology based on AI. RPA can bring greater efficiency to telecommunications functions by allowing telecoms to more easily manage their back office operations and the large volumes of repetitive and rules-based processes. By streamlining execution of once complex, labor-intensive and time-consuming processes such as billing, data entry, workforce management and order fulfillment, RPA frees CSP staff for higher value-add work.
According to a survey by Deloitte, 40% of Telecom, Media and Tech executives say they have garnered “substantial” benefits from cognitive technologies, with 25% having invested $10 million or more. More than three-quarters expect cognitive computing to “substantially transform” their companies within the next three years.
Summary
Artificial intelligence applications in the telecommunications industry is increasingly helping CSPs manage, optimize and maintain not only their infrastructure, but their customer support operations as well. Network optimization, predictive maintenance, virtual assistants and RPA are examples of use cases where AI has impacted the telecom industry, delivering an enhanced CX and added value for the enterprise overall.
-
No more submissions exist.
-
No more submissions exist.