Applying Dynamic Embeddings in Natural Language Processing to track the Evolution of Tech Skills

location_city Online schedule Jun 30th 09:00 - 09:45 AM place Grand Ball Room 1

Many data scientists are familiar with word embedding models such as word2vec, which capture semantic similarity of words in a large corpus. However, word embeddings are limited in their ability to interrogate a corpus alongside other context or over time. Moreover, word embedding models either need significant amounts of data, or tuning through transfer learning of a domain-specific vocabulary that is unique to most commercial applications.

In this talk, I will introduce exponential family embeddings. Developed by Rudolph and Blei, these methods extend the idea of word embeddings to other types of high-dimensional data. I will demonstrate how they can be used to conduct advanced topic modeling on datasets that are medium-sized, which are specialized enough to require significant modifications of a word2vec model and contain more general data types (including categorical, count, continuous). I will discuss how my team implemented a dynamic embedding model using Tensor Flow and our proprietary corpus of job descriptions. Using both categorical and natural language data associated with jobs, we charted the development of different skill sets over the last few years. I will compare data science skill sets in US jobs vs Australian roles, specifically focusing on how tech and data science skill sets have developed, grown and pollinated other types of jobs over time.

 
 

Target Audience

From a technical standpoint, experienced Data Scientists and Data Engineers with an interest in NLP. From a content standpoint, anyone with an interest in tech and data science skill sets.

schedule Submitted 1 month ago